Reactor Theta-13 Measurement

John Beacom
Theoretical Astrophysics Group, Fermilab

Basic Assumptions

 $E_v \simeq 4$ MeV, varies by $\times 2$ or $\div 2$

$$\theta_{13}$$
: $\sin^2 2\theta_{13} \le 0.1$, $\delta m_{13}^2 \simeq 3 \times 10^{-3} \, eV^2$

$$\theta_{12}: \sin^2 2\theta_{12} \simeq 0.9, \, \delta m_{12}^2 \simeq 7 \times 10^{-5} \, eV^2$$

1.65km: maximal oscillations at peak oscillation phase = 90 degrees
FAR: 1.65 km, NEAR: 165 m

Goal is to work to the 1% (absolute) level

Distance Uncertainty

Flux error is double distance error

FAR: 8 m is enough

NEAR: need 0.8 m (properly weighted)

- Distance uncertainty is differential between NEAR and FAR
- Distance uncertainty doesn't matter in oscillation probability

NEAR Detector Sub-Oscillations

FAR: Rate $\sim 1 - \sin^2 2\theta_{13} \sin^2 (90^\circ)$

NEAR: Rate $\sim 1 - \sin^2 2\theta_{13} \sin^2 (9^\circ)$

Ratio
$$\simeq 1 - \sin^2 2\theta_{13} \left[\sin^2 (90^\circ) - \sin^2 (9^\circ) \right]$$

1 0.025

Could matter for a farther near detector

FAR Detector Sub-Oscillations

Effect ~
$$1-0.9 \sin^2 \left(\frac{1.27 \cdot 7 \times 10^{-5} \cdot 1650}{4} \right)$$

 $\simeq 2^\circ$

Deviation ≈ 0.001

Ok, but can reach 0.01 with slight shifts in the assumed parameters

Cautions

- · Could be oscillations to sterile neutrinos
- Maximize spectrum distortion versus rate to get a clean signature
- NEAR: high rate good but careful about distance error
- FAR: higher backgrounds effect response, which makes it different from the NEAR detector
- Many reactors complicate signals/backgrounds
- Backgrounds and oscillations maximal at low E

Cross Section Errors

- Radiative corrections ~ few percent
 Recoil + weak magnetism ~ few percent
- Recoil neutron ~ E^2/M ~ tens of keV
 Spectrum correction up to 10%
- · Miscalibration at a few keV causes a flux error
- Want to get right absolute calibration
- Can reduce cross section error to about 0.2%

Finite Event Size

- Detected events are not pointlike
- Event size « reactor-detector distance
- But event size not so small compared to detector size or position resolution
- Positron travels just a few cm, but neutron cloud has radius of about 5 cm at one sigma (and is displaced); comment on Bugey segmentation
- Angular distributions are not isotropic

More On Correlations

- Position-neutron detection efficiency variation with energy of each
- Containment correlated to separation (differential if detectors not same size)
- Near detector size is ~ 1 degree and reactor size can be ~ 3 degrees; this affects event containment at the edges
- Note 15 cm / 3 m is 5%, but turns into 15% in the detected rate

Final Comments

- Reactor is the way to go for theta-13; cosmology may get to normal vs. inverted first
- It should be possible to reach 1%, and it will be more compelling if it is an absolute error; need to improve over Bugey by a factor 4 or so
- Decisive signal and systematic control needed since these results are a crucial input to the ~ \$billion neutrino factory decision
- Careful about cross section details; see
 Vogel and Beacom, PRD 60, 053003 (1999)